Задать вопрос
6 февраля, 07:20

Докажите, что если у параллелограмма диагональ делит угол на две равные части, то он является ромбом

+3
Ответы (1)
  1. М
    6 февраля, 09:04
    0
    Как известно - параллелограм - это такой 4-ех угольник, у которого противоположные стороны попарно параллельны, а ромб - это частный случай параллелограмма, у которого все стороны равны между собой. Таким образом, чтобы доказать, что параллелограм - это ромб, нужно доказать, что его две смежные стороны равны между собой. Если диагональ параллелограмма разделила его угол пополам, то оба полученных треугольника с общей стороной - диагональю будут являться равнобедренными, т. к. их боковые углы - вертикальные при пересечении двух параллельных прямых секущей. А значит смежные стороны параллелограмма равны, а он - ромб.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Докажите, что если у параллелограмма диагональ делит угол на две равные части, то он является ромбом ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы
Войти
Задать вопрос