Задать вопрос
3 марта, 13:35

Какое наибольшее количество чисел от 1500 до 2200 (крайние числа включительно) можно выбрать так, что сумма никаких двух из них не делится на 5?

+2
Ответы (1)
  1. 3 марта, 15:29
    0
    - Чисел, делящихся на 5, может быть не более одного, иначе сумма двух чисел, делящихся на 5, будет делиться на 5.

    - Если выбрано хоть одно число, дающее остаток 1 при делении на 5, то не должны быть выбраны числа, дающие остаток 4 при делении на 5, и наоборот.

    - Если выбрано хоть одно число, дающее остаток 2 при делении на 5, то не должны быть выбраны числа, дающие остаток 3 при делении на 5, и наоборот.

    Чисел, дающих остаток 0 при делении на 5: 2200/5 - 1500/5 + 1 = 440 - 300 + 1 = 141, и их на 1 больше, чем с каждым ненулевым остатком.

    Итак, можно взять неболее 1 числа, делящегося на 5, не более половины из 280 с остатками 1 или 4, не более половины из 280 с остатками 2 или 3. Тогда можно выбрать не больше, чем 1 + 140 + 140 = 281 число.

    Оценка достигается, например, если выбрать все числа с остатками 1 и 3 и число 2010.

    Ответ. 281
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Какое наибольшее количество чисел от 1500 до 2200 (крайние числа включительно) можно выбрать так, что сумма никаких двух из них не делится ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы