Задать вопрос
11 июня, 21:27

В городе отличников от каждой площади отходит ровно 5 улиц. Докажите, что число площадей чётно, а число улиц делится на 5 (улицы соединяют площади).

+5
Ответы (1)
  1. 11 июня, 21:51
    0
    Пусть имеется n площадей, и n нечетно. Т к от каждой площади отходит 5 улиц, а улица соединяет две площади, количество улиц в 2,5 раза больше площадей и равно 2,5n=5*n/2. 5n неченое число, наверное число разделить на 2 будет дробное, что не может быть количеством улиц. Если n черное, 5n черное и делится на 2, а также 5n/2 делится на 5
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В городе отличников от каждой площади отходит ровно 5 улиц. Докажите, что число площадей чётно, а число улиц делится на 5 (улицы соединяют ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы