Задать вопрос
8 февраля, 03:59

Ка А лежит вне данной окружности с центром О. Окружность с диаметром ОА пересекается с данной в точках Б и С. Докажите, что прямые АВ и АС - касательные к данной окружности

+5
Ответы (1)
  1. 8 февраля, 06:38
    0
    Заметим, что угол ACO опирается на диаметр окружности, которая пересекает данную. Значит этот угол является прямым. Но OC - радиус данной окружности с центром O, а AC - часть прямой, проходящей через точку C, лежащую на данной окружности. Так как угол ACO прямой, то радиус OC и AC перпендикулярны. Значит AC - касательная к данной окружности. Аналогично для AB.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Ка А лежит вне данной окружности с центром О. Окружность с диаметром ОА пересекается с данной в точках Б и С. Докажите, что прямые АВ и АС ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы