Задать вопрос
25 января, 06:28

В прямоугольном треугольнике ABC (угол C=90 градусов) AB=10, угол ABC=30 градусов. С центром в точке A проведена окружность. Каким должен быть ее радиус, чтобы:

а) Окружность касалась с прямой ВС

b) Окружность не имела общих точек с прямой ВС

с) Окружность имела две общие точки с прямой ВС

+3
Ответы (1)
  1. 25 января, 08:45
    0
    Катет против угла в 30° равен половине гипотенузы ⇒ АС=10:2=5.

    Точка А - центр окружности.

    а) чтобы окружность касалась катета ВС, радиус должен быть

    равен 5, то есть R=5,

    б) чтобы окружность не имела общих точек с катетом ВС, радиус должен быть меньше 5, то есть R<5,

    в) чтобы окружность имела две общие точки с катетом ВС, радиус должен быть больше 5, R>5.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В прямоугольном треугольнике ABC (угол C=90 градусов) AB=10, угол ABC=30 градусов. С центром в точке A проведена окружность. Каким должен ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы