Задать вопрос
28 апреля, 20:28

Докажите, что серединный перпендикуляр к хорде окружности проходит через ее центр

+3
Ответы (1)
  1. 28 апреля, 20:48
    -1
    О центр окружности, АВ - хорда.

    Тогда ОА = ОВ как радиусы окружности.

    Значит треуг. АОВ - равнобедренный с основанием АВ.

    В равнобедренном треуг-ке высота, проведенная из вершины к основанию является бисектриссой и медианой.

    Поскольку высота - это перпендикуляр, а медиана делит сторону АВ пополам, то она является серединным перпендикуляром, т. е. проходит через середину хорды АВ.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Докажите, что серединный перпендикуляр к хорде окружности проходит через ее центр ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы