Задать вопрос
19 декабря, 11:32

Прямая, параллельная стороне ab=5 треугольника abc и проходящая через центр вписанной в него окружности, пересекает стороны bc и ac в точках m и n соответственно. найдите периметр четырехугольника abmn если mn=3

+2
Ответы (1)
  1. 19 декабря, 11:44
    0
    Центр вписанной в треугольник окружности находится на пересечении биссектрис углов треугольника.

    Если провести из центра этой окружности перпендикуляр ОД на сторону АВ, то четырехугольник abmn (а это трапеция по заданию, так как mn параллельно АВ), то получим две прямоугольные трапеции, в которых диагонали АО и ВО - биссектрисы острых углов.

    По свойству биссектрисы острого угла трапеции - она отсекает на верхнем основании отрезок, равный боковой стороне. То есть верхнее основание - это mn - равно сумме боковых сторон и эта сумма равна 3.

    Тогда периметр четырехугольника abmn равен 5 + 3 + 3 = 11.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Прямая, параллельная стороне ab=5 треугольника abc и проходящая через центр вписанной в него окружности, пересекает стороны bc и ac в ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы