Задать вопрос
30 июня, 07:46

Дан правильный 16-угольник. Найдите количество четвёрок его вершин, являющихся вершинами выпуклого четырёхугольника, в котором ровно два угла равны 90. (Две четвёрки вершин, отличающиеся порядком вершин, считаются одинаковыми.)

+4
Ответы (1)
  1. 30 июня, 07:56
    0
    Трапецию с двумя вершинами по 90 градусов не вписать в правильный 16-и угольник. зато можно вписать четырёхугольника, у которого два противоположных угла по 90°

    Рассмотрим диагональ такого четырёхугольника, проведённую из вершины тупого угла в острый угол. Квадраты под запретом по условию. Эта диагональ является одновременно диаметром описанной окружности 16-и угольника и четырёхугольника, и гипотенузой двух прямоугольных треугольников, на которые диагональ делит четырёхугольник.

    Всего диагоналей возможно 16/2=8

    С каждой стороны от диагонали возможны 7 точек расположения прямого угла.

    И всего четырёхугольников возможно

    7*7*8=49*8=392
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Дан правильный 16-угольник. Найдите количество четвёрок его вершин, являющихся вершинами выпуклого четырёхугольника, в котором ровно два ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы