Задать вопрос
16 апреля, 12:25

В треугольнике ABC высота AH равна 27/3, а сторона AB равна 54. найдите cosB

+4
Ответы (1)
  1. 16 апреля, 15:09
    0
    Высота АН делит треугольник ВАС на два прямоугольных треугольника: ВАН и САН.

    Рассмотрим треугольник ВАН.

    АН=27/3 - катет, противолежащий углу В.

    АВ=54 - гипотенуза

    sinВ = 27/3 : 54 = 9:54=1/6

    Известно, что

    (sinВ) ^2 + (cosВ) ^2 = 1

    Отсюда

    cosВ = √[1 - (sinВ) ^2] = √[1 - (1/6) ^2] = √ (1-1/36) = √ (36/36 - 1/36) = √ (35/36) = (√35) / 6
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В треугольнике ABC высота AH равна 27/3, а сторона AB равна 54. найдите cosB ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы