Задать вопрос
1 июля, 22:05

А) решите уравнение 4cos^4x-cos2x-1=0

Б) найдите все корни этого уравнения принадлежащие интервалу (-3pi; -3pi/2)

+5
Ответы (1)
  1. 2 июля, 00:57
    0
    4cos^4 x - 2cos^2 x + 1 - 1 = 0

    2cos^2 x * (2cos^2 x - 1) = 0

    1) cos^2 x = 0; cos x = 0; x1 = pi/2 + pi*k

    2) 2cos^2 x - 1 = cos 2x = 0;

    2x = pi/2 + 2pi*k; x2 = pi/4 + pi*k

    2x = - pi/2 + 2pi*k; x3 = - pi/4 + pi*k

    Корни x2 и x3 можно объединить в один

    x2 = pi/4 + pi/2*k

    На отрезке [-3pi; - 3pi/2] будут корни

    x1 = pi/4 - 3pi = - 11pi/4

    x2 = pi/2 - 3pi = - 5pi/2

    x3 = 3pi/4 - 3pi = - 9pi/4

    x4 = 5pi/4 - 3pi = - 7pi/4

    x5 = 3pi/2 - 3pi = - 3pi/2
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «А) решите уравнение 4cos^4x-cos2x-1=0 Б) найдите все корни этого уравнения принадлежащие интервалу (-3pi; -3pi/2) ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы