Задать вопрос
7 октября, 06:21

Два двузначных числа в сумме дают 87. В каждом из них поменяли местами цифры (число десятков стало числом единиц и наоборот) и полученные числа сложили. Какая сумма могла получиться? Укажите все возможные варианты и докажите, что других нет.

+2
Ответы (1)
  1. 7 октября, 10:02
    0
    Короче смотри:

    Если сумма десятков равна 8, то сумма единиц должна быть равна семи, тогда выполняется равенство 8*10 + 7*1 = 87. Теперь поменяем десятки и единицы местами и получим 7*10 + 8*1 = 78

    Возможен и такой вариант, когда сумма десятков равна 7, а сумма единиц равна 17. В этом случае имеем: 7*10 + 17*1 = 87. Переставляем местами десятки и единицы и получаем 17*10 + 7*1 = 177

    Другие варианты по десяткам и единицам невозможны: если десятков будет 6, то мы никак не наберем двумя числами, которые меньше 10 число 27, а если десятков будет 9 - сразу вылетаем за пределы условия задачи.

    Надеюсь, понятно объяснил.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Два двузначных числа в сумме дают 87. В каждом из них поменяли местами цифры (число десятков стало числом единиц и наоборот) и полученные ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы