Задать вопрос
13 ноября, 17:21

Куб с ребром 4, все грани которого окрашены, распилен на 64 единичных кубика. полученные кубики перемешали и сложили в мешок. найдите вероятность того, что взятый наугад кубик будет иметь не менее двух окрашенных граней. решение

+1
Ответы (1)
  1. 13 ноября, 19:35
    0
    Найдем, на сколько частей разделили каждое ребро: корень третьей степени из 64=4. На одном ребре куба находится по 4-2=2 кубика с двумя окрашенными гранями. Два оставшихся кубика на каждом из ребер будут иметь по три окрашенные грани. Кроме того, каждый из них будет общим и для двух других ребер одновременно: 2/3 кубика. Всего у куба 12 ребер, значит считаем общую сумму: (2+2/3) * 12=32. Находим вероятность: 32/64=0,5
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Куб с ребром 4, все грани которого окрашены, распилен на 64 единичных кубика. полученные кубики перемешали и сложили в мешок. найдите ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы