Задать вопрос
11 сентября, 13:07

2cos2x+4|cosx| >0

Помогите решить

+3
Ответы (1)
  1. 11 сентября, 14:57
    0
    2 · cos 2x + 4 · |cos x| > 0

    cos 2x + 2 · |cos x| > 0

    2 · cos²x - 1 + 2 · |cos x| > 0

    2 · |cos x|² - 1 + 2 · |cos x| > 0

    Замена: |cos x| = t, 0 ≤ t ≤ 1.

    2t² + 2t - 1 > 0

    2t² + 2t - 1 = 0

    D = 12

    t = (-2 (+/-) √12) / 4 = (-1 (+/-) √3) / 2

    Решения неравенства 2t² + 2t - 1 > 0: t ∈ (-∞; (-1 - √3) / 2) ∪ ((-1 + √3) / 2; + ∞).

    С учётом 0 ≤ t ≤ 1: t ∈ ((√3 - 1) / 2; 1].

    |cos x| ∈ ((√3 - 1) / 2; 1]

    x ∈ (-arc cos (√3 - 1) / 2 + πn; arc cos (√3 - 1) / 2 + πn), n ∈ Z
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «2cos2x+4|cosx| >0 Помогите решить ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы