Задать вопрос
24 августа, 02:01

Докажите, что из пяти натур. чисел найдется три, сумма которых делится на три.

+2
Ответы (1)
  1. 24 августа, 04:37
    0
    Либо хотя бы одно число делится на 3, либо найдутся три такие числа, что их остатки равны. Действительно, ведь все числа можно представить как 3n, 3n - 1 и 3n - 2 (n - натуральное). Остатки их могут быть равны 0, 1 и 2. Ещё, их у нас 5, что не позволит нам их представить иначе. В первом случае (когда хотя бы одно число делится на 3), мы можем сложить числа с остатками 0, 1 и 2. Тогда, (a + b + c) mod 3 = (a mod 3 + b mod 3 + c mod 3) mod 3 = 0. Во втором случае, если найдутся три числа с равными остатками, то аналогично (a mod 3 + b mod 3 + c mod 3) mod 3 = 0.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Докажите, что из пяти натур. чисел найдется три, сумма которых делится на три. ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы