Задать вопрос
30 августа, 13:58

Центральный угол равный 60 опирается на хорду, длина которой 6 см. Найдите диаметр этой окружности.

+4
Ответы (2)
  1. 30 августа, 14:07
    0
    2 радиуса образуют угол 60°, при этом они создают треугольник. Этот треугольник равносторонний, поскольку сумма углов треугольника 180°, а углы от хорды равны. Поэтому у него стороны равны. То есть радиус равен 6 см, следовательно диаметр 12 см.
  2. 30 августа, 17:14
    0
    Если провести радиусы к вершинам хорды окружности, образуется треугольник. Так как радиусы равны, то треугольник равнобедренный, следовательно, углы при основании равны:

    2x + 60 = 180, 2x - углы при основании

    2x = 120

    x = 60°

    Значит треугольник равносторонний и радиус равен 6 см

    Диаметр равен двум радиусам:

    D = 2R = 2 * 6 = 12 см

    Ответ: 12 см
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Центральный угол равный 60 опирается на хорду, длина которой 6 см. Найдите диаметр этой окружности. ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы