Задать вопрос
26 мая, 11:38

Доказать, что неравенство a² + b² ≥ 2ab верно при любых а и б

+1
Ответы (1)
  1. 26 мая, 11:49
    0
    Докажем, что для любых а и b выражение a²+b² - 2ab неотрицательно. Действительно, a²+b²-2ab = (a-b) ²≥0. Следовательно, неравенство (1) верно при любых значениях a и b, причем знак равенства имеет место при а=b
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Доказать, что неравенство a² + b² ≥ 2ab верно при любых а и б ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы