Задать вопрос
20 ноября, 09:24

Помогите решить с помощью метода математической индукции:

1*4+2*7+3*10 + ... + n (3n+1) = n (n+1) ^2

+3
Ответы (1)
  1. 20 ноября, 09:32
    0
    База (n = 1) :

    1 * 4 = 1 (1 + 1) ² = 4.

    Переход:

    Пусть выражение верно для n = k, докажем, что оно верно и для k+1:

    1 * 4 + 2 * 7 + ... + k (3k + 1) + (k + 1) (3k + 4) = (k + 1) (k + 2) ²

    По предположению индукции 1 * 4 + 2 * 7 + ... + k (3k + 1) = k (k+1) ², значит:

    k (k+1) ² + (k + 1) (3k + 4) = (k + 1) (k + 2) ²

    k³ + 2k² + k + 3k² + 4k + 3k + 4 = (k + 1) (k² + 4k + 4)

    k³ + 5k² + 8k + 4 = k³ + 5k² + 8k + 4

    Значит, для n = k+1 выражение тоже верно. И так по индукции.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Помогите решить с помощью метода математической индукции: 1*4+2*7+3*10 + ... + n (3n+1) = n (n+1) ^2 ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы