Задать вопрос
4 апреля, 21:23

К числа А, состоящему из восьми ненулевых цифр прибавили восьмизначное число, состоящее из одинаковых цифр, и получили число B. Оказалось что число B может быть получино из числа А перестановкой некоторых цифр. На какую цифру может заканчиваться число А, если последняя цифра числа B равна 5?

+3
Ответы (1)
  1. 4 апреля, 22:27
    0
    Описанного в условии не бывает

    Пошаговое объяснение:

    Если у двух чисел равные суммы цифр, то они дают одинаковые остатки при делении на 9. Применяем это к числам B и A и находим, что B - A = 11111111 * x (x - какая-то цифра) делится на 9. Поскольку первый сомножитель взаимно прост с 9, то произведение делится на 9, если и только если x делится на 9, значит, x = 9. Но если прибавить к любому 8-значному числу A число 11111111 * 9 = 99999999, то 8-значное число никак не получится
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «К числа А, состоящему из восьми ненулевых цифр прибавили восьмизначное число, состоящее из одинаковых цифр, и получили число B. Оказалось ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы