Задать вопрос
20 августа, 05:21

Квадрат с вершинами в узлах сетки и сторонами длиной 2015, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников. Верно ли что среди них есть хотя бы один прямоугольник, периметр как у которого делится на 4?

+5
Ответы (1)
  1. 20 августа, 06:41
    0
    Верно, потому что

    2015+2015=4030 (четное число)
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Квадрат с вершинами в узлах сетки и сторонами длиной 2015, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников. ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы