Задать вопрос
30 декабря, 13:49

Одна бригада может убрать все поле за 12 дней. Другой бригаде для выполнения той же работы нужно 3/4 этого времени. После того как, в течении 5 дней работала только первая бригада, к ней присоединилась вторая, и обе вместе закончили работу. Сколько дней работали бригады вместе?

+3
Ответы (2)
  1. 30 декабря, 14:06
    0
    Первой бригаде для выполнения задания нужно 12 дней, а второй 9 дней, поэтому дневная производительность первой бригады равна 1/12, второй

    1/9, а их общая дневная производительность составляет 1/12 + 1/9 = 7/36

    Первая бригада, отработав 5 дней, выполнила 5/12 работы. Соответственно осталось выполнить 7/12.

    Таким образом, две бригады вместе должны работать

    (7/12) / (7/36) = 3 дня.
  2. 30 декабря, 17:13
    0
    12:4·3=9 (дн.) - выполнит работу вторая бригада

    Производительность первой бригады равна 1/12, второй - 1/9.

    Пусть бригады вместе работали х дней. За это время первая бригада сделала х/12, вторая - х/9 работы. Составляем уравнение:

    5/12 + х/12 + х/9 = 1

    15+3 х+4 х=36

    3 х+4 х=36-15

    7 х=21

    х=3

    Ответ. 3 дня.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Одна бригада может убрать все поле за 12 дней. Другой бригаде для выполнения той же работы нужно 3/4 этого времени. После того как, в ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы