Задать вопрос
16 апреля, 08:25

В треугольник ABC вписана окружность, касающая сторон AB, BC и AC в точках P, Q и K соответсвенно. Известно, что BK - медиана треугольника. Докажите; что прямые PQ и AC параллельны.

+4
Ответы (1)
  1. 16 апреля, 09:48
    0
    Если BK медиана, то KC=QC, KA=PA, BP=PQ, по свойству отрезков касательных проведенных из одной точки, получаем что треугольник ABC равнобедренный, Треугольник BPQ подобен треугольнику ABC (по 2-ум углам) и так-же является равнобедренным, из этого следует PQ||AC
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В треугольник ABC вписана окружность, касающая сторон AB, BC и AC в точках P, Q и K соответсвенно. Известно, что BK - медиана треугольника. ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы