Задать вопрос
6 февраля, 14:04

Назовем натуральное число хорошим, если цифры в его десятичной записи можно разбить на две группы так, что суммы цифр в этих группах равны. Найдите наименьшее натуральное число n такое, сто сисла n и n+1 - хорошие

+1
Ответы (1)
  1. 6 февраля, 16:18
    0
    Легко видеть, что в любом хорошем числе сумма цифр четна. Следовательно, если числа n и n+1 хорошие, число n должно заканчиваться на 9 (иначе суммы цифр в этих числах будут иметь разную четность). Нетрудно проверить, что n не может быть однозначным или двузначным - если n двузначно, то его цифры равны и последняя равна 9, но число 99 не подходит, так как сумма цифр числа 100 равна 1.

    Покажем, что если n трехзначно, то сумма его первых двух цифр равна 9. Как показано выше, последняя цифра должна быть равна 9. Кроме того, цифры можно разбить на две группы с одинаковой суммой. Понятно, что сумма цифр в каждой группе не больше 9 (т. к. в одной из групп будет только одна цифра). Значит, либо в одной группе будет девятка, а в другой две первые цифры, либо в одной группе будет девятка и ноль, а в другой первая цифра (ноль не может стоять на первом месте, а первая цифра в этом случае также будет равна 9). Так или иначе, число имеет вид ab9, где a+b=9. Тогда число n+1 имеет вид a (b+1) 0, поскольку это число хорошее, a=b+1. Значит, b + (b+1) = 9 и b=4, а=5. Таким образом, единственное трехзначное n, которое нам подойдет, равно 549, оно и будет наименьшим возможным.

    Ответ: 549.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Назовем натуральное число хорошим, если цифры в его десятичной записи можно разбить на две группы так, что суммы цифр в этих группах равны. ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы