Задать вопрос
7 июня, 03:28

Y = x³+6x²+19 на отрезке[-6; - 2]. Найти наибольшее значение функции.

+5
Ответы (1)
  1. 7 июня, 06:30
    0
    Находим производную. Y ' = 3*x^2+12x. Приравниваем к нулю. 3x^2+12x=0

    x1=0, x2 = - 4. Точка х1 = 0 не входит в заданный интервал [ - 6; - 2]

    Для точки x2 = - 4 находим:

    Y ' (- 5) = 3*25 + 12 * (- 5) = 15 = > левее точки х = - 4 функция возрастает

    Y ' (- 3) = 3*9 + 12 * (- 3) = - 9 = > правее точки х = - 4 функция убывает

    следовательно, точка х = - 4 точка локального максимума функции

    Y (- 4) = (- 4) ^3 + 6*16+19 = - 64 + 96 + 19 = 51

    Это значение должно быть больше, чем на границах интервала Y (- 6) и

    Y (- 2)

    Y (- 6) = (- 6) ^3+6*6^2+19 = 19

    Y (- 2) = (- 2) ^3+6*4+19 = - 8 + 24 + 19 = 35
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Y = x³+6x²+19 на отрезке[-6; - 2]. Найти наибольшее значение функции. ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы