Задать вопрос
15 ноября, 20:19

Решите уравнение: 4^x+1 + 4^x-2 = 65

+1
Ответы (2)
  1. 15 ноября, 21:03
    0
    Запись логарифмов: log (основание, число).

    2 варианта решения, в зависимости от степени.

    ! Автор, не теряй скобки.

    4^ (x) + 1 + 4^ (x) - 2 = 65,

    2 * 4^ (x) - 1 = 65,

    2 * 4^ (x) = 66,

    4^ (x) = 33,

    x = log (4, 33).

    Ответ: log (4, 33).

    4^ (x+1) + 4^ (x-2) = 65,

    4^ (x) * 4 + 4^ (x) : 4² = 65,

    4^ (x) * 4 + 4^x : 16 = 65,

    4^ (x) * (4 + 1/16) = 65,

    4^ (x) * (65/16) = 65,

    4^ (x) = 16,

    x = 2.

    Ответ: 2.
  2. 15 ноября, 21:57
    0
    4^ (x+1) + 4 (x-2) = 65

    4^ (x-2) (4^3+1) = 65

    4^ (x-2) = 65/65

    4^ (x-2) = 1

    4^ (x-2) = 4^0

    x-2=0

    x=2
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Решите уравнение: 4^x+1 + 4^x-2 = 65 ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы