Задать вопрос
22 мая, 17:19

Одно натуральное число на 2 больше другого. может ли их произведение оканчиваться на 2017?

+4
Ответы (1)
  1. 22 мая, 18:28
    0
    Не может

    n (n + 2) = 10000x + 2017

    n^2 + 2n - 10000x - 2017 = 0

    d = 2^2 + 4 (10000x + 2017) = 40000x + 4*2017 + 4 = 40000x + 8072

    остаток от деления на пять равен 2, значит d не может быть квадратом какого-либр числа, значит корень из d не целый, и сами n не целые
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Одно натуральное число на 2 больше другого. может ли их произведение оканчиваться на 2017? ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы