Задать вопрос
30 декабря, 09:00

Укажите наибольшее число из области значений функции y=2 cos (3x/2) - 4

+5
Ответы (1)
  1. 30 декабря, 11:28
    0
    Y = 2·cos²x + 2·sin x - 1 = 2· (1 - sin²x) + 2·sin x - 1 = 2 - 2·sin²x + 2·sin x - 1 = - 2·sin²x + 2·sin x + 1

    Замена: t = sin x

    Y = - 2t² + 2t + 1, |t| ≤ 1 - - часть параболы, направленной ветвями вниз, и с вершиной в точке tв = - 2 / 2· (-2) = 1/2.

    Тогда максимальное значение функция достигает в tв = 1/2,

    минимальное - - при t, наиболее удалённом от tв, т. е. в точке t = - 1.

    Ymax = Y (1/2) = - 2· (1/2) ² + 2· (1/2) + 1 = - 1/2 + 1 + 1 = 3/2

    Ymin = Y (-1) = - 2· (-1) ² + 2· (-1) + 1 = - 2 - 2 + 1 = - 3

    Ответ: E (Y) = [-3; 3/2].
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Укажите наибольшее число из области значений функции y=2 cos (3x/2) - 4 ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы