Задать вопрос
24 августа, 18:08

На столе лежат 2005 монет. Двое играют в следующую игру: ходят по очереди; за ход первый может взять со стола любое нечетное число монет от 1 до 99, второй любое четное число монет от 2 до 100. Проигрывает тот, кто не сможет сделать ход.

Кто выиграет при правильной игре?

+4
Ответы (1)
  1. 24 августа, 21:07
    0
    Опишем стратегию первого игрока.

    Первым ходом он должен взять со стола 85 монет.

    Каждым следующим, если второй игрок берет х монет, то первый игрок должен взять 101 х монет (он всегда может это сделать, потому что если х четное число от 2 до 100, то (101 х) нечетное число от 1 до 99).

    Так как 2005=101 19 + 85 + 1, то через 19 таких ответов после хода первого на столе останется 1 монета, и второй не сможет сделать ход, т. е. проиграет.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «На столе лежат 2005 монет. Двое играют в следующую игру: ходят по очереди; за ход первый может взять со стола любое нечетное число монет от ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы