Задать вопрос
11 мая, 07:47

На плоскости есть 6 отрезков, никакие два из которых не параллельны. На каждом из этих отрезков отмечены точки пересечения с другими отрезками, при этом никакие три отрезка не пересекаются в одной точке. Известно, что на первом отрезке 3 точки, на втором 4, ещё на трех по 5 точек. Сколько точек на последнем отрезке?

+3
Ответы (1)
  1. 11 мая, 09:53
    0
    Так как отрезков всего 6, то каждый из данных отрезков пересекается не более чем с 5 другими отрезками. Значит третий, четвертый и пятый отрезки пересекаются со всеми, то есть первый отрезок не пересекается со вторым и шестым, а второй отрезок тогда должен пересекаться ещё и с шестым. Значит, шестой отрезок пересекается со вторым, третьим, четвертым и пятым отрезками.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «На плоскости есть 6 отрезков, никакие два из которых не параллельны. На каждом из этих отрезков отмечены точки пересечения с другими ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы