Задать вопрос
20 мая, 22:20

Считая функцию нормированной на единицу, то есть интеграл от квадрата этой функции по всему объему равен единице, что можно сказать об интеграле от производной квадрата этой функции по всему объему? Это ноль? Тогда как это показать? (,)

+4
Ответы (1)
  1. 21 мая, 00:47
    0
    Интеграл по сути является первообразной, а как известно первообразная является обратной производной, то есть при вычислении интеграла производной некоторой функции ответом будет являться само значение функции.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Считая функцию нормированной на единицу, то есть интеграл от квадрата этой функции по всему объему равен единице, что можно сказать об ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы