Задать вопрос
11 августа, 12:00

Даны уравнения двух сторон прямоугольника 5x+2y-7=0, 5x+2y-15=0 и уравнение его диагонали x+2y+1=0.

Составить уравнения остальных сторон и второй диагонали этого прямоугольника. Сделать чертёж.

+1
Ответы (1)
  1. 11 августа, 13:00
    0
    Находим точки пересечения сторон и диагонали:

    5 х + 2 у - 7 = 0 5 х + 2 у - 7 = 0

    х + 2 у + 1 = 0 - х - 2 у - 1 = 0

    4 х - 8 = 0 х = 8 / 4 = 2

    у = (-1/2) х - (1/2) = - 1 - 1,5 = - 1,5

    5 х + 2 у - 15 = 0 5 х + 2 у - 15 = 0

    х + 2 у + 1 = 0 - х - 2 у - 1 = 0

    4 х - 16 = 0 х = 16 / 4 = 4

    у = (-1/2) х - (1/2) = - 2 - 0,5 = - 2,5

    Найдем уравнение NK, проходящее через точку K (2; -1.5), перпендикулярно прямой y = - 5/2 x + 7/2

    Прямая, проходящая через точку K0 (x0; y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A; B) и, значит, представляется уравнениями:

    (х-хо) / А = (у - уо) / В

    Уравнение прямой:

    (х - 2) / 5 = (у - (-1,5)) / 2

    y = 2/5x - 2.3 или 5y - 2x + 11,5 = 0.

    Аналогично находим уравнение второй стороны:

    y = 2/5 x - 4.1 или 5y - 2x + 20,5 = 0.

    Находим точки пересечения сторон:

    5y - 2x + 11,5 = 0 10 у - 4 х + 23 = 0

    5 х + 2 у - 15 = 0 - 10 у - 25 х + 75 = 0

    -29 х = - 98 х = 98 / 29 = 3.37931

    у = 0,94828

    Вторая точка х = 2.62069, у = - 3.05172

    Уравнение второй диагонали:

    Подставим в формулу координаты точек: x - (3.37931) / (2.62069) - (3.37931) = y - (-0.94828) / (-3.05172) - (-0.94828)

    В итоге получено каноническое уравнение прямой: x - 3.37931 = y + 0.94828 - 0.75862-2.10344

    Из уравнения прямой в каноническом виде получим уравнение прямой с угловым коэффициентом: y = (105172/37931) x - (391378/37931).
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Даны уравнения двух сторон прямоугольника 5x+2y-7=0, 5x+2y-15=0 и уравнение его диагонали x+2y+1=0. Составить уравнения остальных сторон и ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы