Задать вопрос
27 февраля, 12:10

Показать, что объем параллелепипеда, построенного на диагоналях граней данного параллелепипеда, равен удвоенному объему данного параллелепипеда.

+4
Ответы (1)
  1. 27 февраля, 12:19
    0
    Объем параллелепипеда равен смешаному произведению векторов, на которых он построен. Назовем эти вектора а, b, c. Теперь представьте себе этот параллелепипед, точнее его грани. Если Вы вспомните, как строится вектор, являющийся суммой двух других векторов, то Вы поймете, что диагонали граней нашего параллелепипеда есть векторные суммы: a + b a + c b + c А теперь давайте составим из этих векторов смешанное произведение и найдем объем построенного на этих векторах параллелепипеда: ([ (a+b), (a+c) ] (b+c)) = а теперь вспомним алгебраические свойства векторного произведения = ([a, (a+c) ] (b+c)) + ([b, (a+c) ] (b+c)) = ([a, a] (b+c)) + ([a, c] (b+c)) + ([b, a] (b+c)) + ([b, c] (b+c)) = помним что векторное произведение коллинеарных векторов равно 0 = ([a, c] (b+c)) + ([b, a] (b+c)) + ([b, c] (b+c)) = Теперь вспомним свойства скалярного произведения векторов, а именно такое: (a, (b + c)) = (a, b) + (a, c) Применяя его получим: = ([a, c], b) + ([a, c], c) + ([b, a], b) + ([b, a], c) + ([b, c], b) + ([b, c], c) = Теперь вспомним, что скалярное произведение ортогональных векторов равно 0. Так, как в результате векторного произведения получается вектор, перпендикулярный векторам, входящим в векторное произведение, то произведения: ([a, c], c), ([b, a], b), ([b, c], b), ([b, c], c) Равны 0. Действительно в результате векторного произведения [a, c] получается вектор, перпендикулярный вектору с. А скалярное произведение этого вектора с вектором с равно 0. Точно так же и в других произведениях. Вообще говоря, если в смешаное произведение дважды входит один и тот же вектор - оно равно 0. и остается у нас: = ([a, c], b) + ([b, a], c) = 2 ([a, c], b) Что и требовалось доказать. Успехов!
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Показать, что объем параллелепипеда, построенного на диагоналях граней данного параллелепипеда, равен удвоенному объему данного ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы