Задать вопрос
26 мая, 14:19

Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доску оставляется одно такие число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доску будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11

А) Приведите пример задуманных чисел, для которых на доске будет записан набор 2, 4, 6, 8 Б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22? В) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 9, 10, 11, 19, 20, 21, 22, 30, 31, 32, 33, 41, 42, 43, 52

+4
Ответы (1)
  1. 26 мая, 15:46
    0
    а) 2, 2, 2, 2

    б) Здесь 1 заведомо есть, а 22 должно быть суммой всех чисел набора. Тогда, если 1 не брать, получится сумма 21, а её в списке нет. Значит, такого примера не существует.

    в) Число 9 есть, а меньших нет, поэтому 10 и 11 непременно должны быть в наборе. Суммы 19, 20, 21 при этом будут встречаться, а никаких чисел от 12 до 18 включительно в наборе быть не может. Число 22 могло получиться или по причине его наличия в наборе, или как сумма меньших, но тогда это только 11+11. В первом случае получаем набор 9, 10, 11, 22, где сумма равна 52, и он не может содержать других чисел. Это один из вариантов, и он удовлетворяет условию. В случае, когда 11 повторяется, до общей суммы 52 не хватает 11, то есть 11 должно присутствовать трижды. Набор чисел 9, 10, 11, 11, 11 также удовлетворяет условию: все суммы из предыдущего варианта в нём встречаются, а новых, как легко убедиться, нет. Таким образом, условию удовлетворяют ровно два набора, указанные выше.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы