Задать вопрос
11 мая, 21:44

Биссектриса угла В треугольника АВС делит медиану, проведённую из вершины С, в отношении 7:2, считая от вершины С. В каком отношении, считая от вершины А, эта биссектриса делит медиану, проведённую из вершины А?

+2
Ответы (1)
  1. 12 мая, 01:13
    0
    обозначим медианы сд и ар точка пересечения медианы св с биссектрисой К, а медианы ар-точка м. Тогда по условию ДК/КС=2/7. По свойству биссектрис в треугольнике ВДС ВД/ВС=ДК/КС=2/7. Или (1/2*АВ) / ВС=2/7. Отсюда АВ/ВС=4/7. Аналогично в треугольнике АВР АВ/ВР=АМ/МР. Но АВ/ВР=АВ / (1/2*ВС) = 8/7. Следовательно искомое отношение АМ/МР=8/7.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Биссектриса угла В треугольника АВС делит медиану, проведённую из вершины С, в отношении 7:2, считая от вершины С. В каком отношении, ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы