Задать вопрос
30 октября, 06:26

попробуй это решить: 2sin^2 2x = (cosx+sinx) ^2

+3
Ответы (1)
  1. 30 октября, 09:29
    0
    2sin^2 (2x) = (cos x + sin x) ^2 = cos^2 x + 2sin x*cos x + sin^2 x

    2sin^2 (2x) = 1 + sin (2x)

    2sin^2 (2x) - sin (2x) - 1 = 0

    Получилось квадратное уравнение относительно sin (2x)

    D = 1 - 4*2 (-1) = 1 + 8 = 9 = 3^2

    1 корень sin (2x) = (1 - 3) / 4 = - 2/4 = - 1/2

    2x = - pi/6 + 2pi*k; x1 = - pi/12 + pi*k

    2x = 7pi/6 + 2pi*k; x2 = 7pi/12 + pi*k

    2 корень sin (2x) = (1 + 3) / 4 = 4/4 = 1

    2x = pi/2 + 2pi*k; x3 = pi/4 + pi*k
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «попробуй это решить: 2sin^2 2x = (cosx+sinx) ^2 ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы