Задать вопрос
13 апреля, 15:08

вычислите производную функции f (x) = sin x cos x, в точке x с основнаием 0 = 5/6

+3
Ответы (1)
  1. 13 апреля, 16:10
    0
    1 шаг. Находим производную от функции f (x). (производные все табличные; (sinx) ' = cosx; (cosx) ' = - sinx)

    f' (x) = (4sinx - cosx) ' = (4sinx) ' - (cosx) ' = 4cosx + sinx

    2 шаг. Находим значение производной в точке x = - п/4

    Воспользуемся следующим:

    cos (-π/4) = cos (-180/4) = cos (-45) = cos (45) = √2/2

    sin (-π/4) = sin (-180/4) = sin (-45) = - sin (45) = - √2/2

    Получаем:

    f' (-п/4) = 4*cos (-п/4) + sin (-п/4) = 4*√2/2 - √2/2 = (3*√2) / 2
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «вычислите производную функции f (x) = sin x cos x, в точке x с основнаием 0 = 5/6 ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы