Задать вопрос
5 июля, 18:00

Докажите, что среди 51 целых чисел найдутся два числа, разность квадратов которых делится на 100

+4
Ответы (1)
  1. 5 июля, 21:34
    0
    От противного: пусть это невозможно. выберем 52 числа таких, что из них нельзя выбрать два, сумма или разность которых делится на 100. рассмотрим эти числа. пусть число дает остаток k, при делении на 100, тогда среди этих 52 чисел не должно быть другого числа, которое дает остаток k или 100-k ... всего возможных различных остатков от деления на 100 сто штук (0,1, 2 ... 99). мы видим, что каждое из чисел "забирает" два остатка из этого перечня. т. е. когда мы рассмотрим 50 чисел из этого списка, то у нас не останется "свободных" остатков для 51, следовательно исходное предположение неверно и среди 52 чисел всегда можно выбрать такую пару, чтд ЗЫ на самом деле из этого доказательства видно, что и для 51 числа утверждение верно.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Докажите, что среди 51 целых чисел найдутся два числа, разность квадратов которых делится на 100 ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы