Задать вопрос
22 марта, 23:18

В урне содержится 6 черных и белых шаров, к ним добавляют 3 белых шара. После этого из урны случайным образом вынимают 4 белых шара. Найти вероятность того, что все вынутые шары белые, предполагая, что все возможные предположения о первоначальном содержании урны равновозможны.

Насчет последнего предложения. Как я понял вначале может быть 6 белых шаров, или 5 б и 1 ч и т. д.

+2
Ответы (1)
  1. 23 марта, 00:19
    0
    Вы правы, нужно рассматривать 5 случаев. Каждый случай первоначального набора шаров происходит с вероятностью 1/5.

    1) Изначально в урне 4 черных шара и 0 белых. Затем добавляют 3 белых. Найдем вероятность Р1, что все 3 вынутых шара - белые. Всего шаров 7. Вероятность, что первым вынули белый шар равна 3/7. Осталось 6 шаров, из них 2 белых. Вероятность, что второй вынутый шар белый равна 2/6, вероятность, что третий вынутый белый равна 1/5. По теореме о произведении вероятностей: Р1 = 3/7 * 2/6 * 1/5 = 1/35

    2) Изначально в урне 3 черных шара и 1 белый. Затем добавляют 3 белых. Найдем вероятность Р2, что все 3 вынутых шара - белые. Всего шаров 7, из них 4 белых.

    Р2 = 4/7 * 3/6 * 2/5 = 4/35

    3) Изначально в урне 2 черных шара и 2 белых. Затем добавляют 3 белых. Найдем вероятность Р3, что все 3 вынутых шара - белые. Всего шаров 7, 5 из них - белые.

    Р3 = 5/7 * 4/6 * 3/5 = 2/7

    4) Изначально в урне 1 черный шара и 3 белых. Затем добавляют 3 белых. Найдем вероятность Р4, что все 3 вынутых шара - белые. Всего 7 шаров, из них 6 белых.

    Р4 = 6/7 * 5/6 * 4/5 = 4/7

    5) Изначально в урне 0 черных шара и 4 белых. Затем добавляют 3 белых. Найдем вероятность Р5, что все 3 вынутых шара - белые.

    Очевидно, что вероятность равна 1. Р5=1

    Найдем общую вероятность. Р = (Р1+Р2+Р3+Р4+Р5) / 5 = 2/5
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В урне содержится 6 черных и белых шаров, к ним добавляют 3 белых шара. После этого из урны случайным образом вынимают 4 белых шара. Найти ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы