Задать вопрос
26 апреля, 12:32

Докажите, что для любого натурального N, взаимно простого с 10,

существует репьюнит (число из единиц), кратный N, например, 111

делится на 3, а 111111 делится на 7 и 13

+5
Ответы (1)
  1. 26 апреля, 14:44
    0
    При делении репьюнита на число N возможны N различных остатков: 0,1, ..., N-1. Рассмотрим N+1 репьюнит (например, из одной, двух, ..., N+1 единиц) и их остатки при делении на число N. По принципу Дирихле найдется два репьюнита с одинаковыми остатками при делении на N. Пусть больший из них содерижит p единиц, а меньший q единиц, p>q. Рассмотрим разность этих репьюнитов. Это число делится на N, так как уменьшаемое и вычитаемое имеют одинаковые остатки при делении на N. С другой стороны, разность равна произведению репьюнита длины p-q на число 10^q. Поскольку числа N и 10 взаимно просты, числа N и 10^q также взаимно просты. Но тогда репьюнит длины p-q делится на N, что и требовалось.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Докажите, что для любого натурального N, взаимно простого с 10, существует репьюнит (число из единиц), кратный N, например, 111 делится на ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы