Задать вопрос
3 декабря, 17:46

Найдите площадь круга, если площадь вписанного ограничивающую его окружность квадрата равна 36 корень из 3 дм^2

+5
Ответы (1)
  1. 3 декабря, 20:01
    0
    Если я правильно поняла задание, то ... найдем сторону вписанного квадрата - это корень из 36 корней из трех. Получим, что сторона квадрата 6 корней четвертой степени из трех. Диагональ квадрата (она же является диаметром описанной окружности) находится как а корней из 2, т. е. сторона нашего квадрата 6 корней четвертой степени из 12, значит, радиус окружности 3 корня четвертой степени из 12. Площадь ограничивающего круга равна "пи радиус в квадрате". Т. о. площадь круга 18 пи корней из трех
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Найдите площадь круга, если площадь вписанного ограничивающую его окружность квадрата равна 36 корень из 3 дм^2 ...» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы