Задать вопрос
8 августа, 15:51

Биссектриса угла B треугольника ABC делит медиану, проведенную из вершины C, в отношении 7:2, считая от вершины C. В каком отношении, считая от вершины A, эта биссектриса делит медиану, проведенную из вершины A?

+4
Ответы (1)
  1. 8 августа, 16:04
    0
    Обозначим медианы СД и АР. Точка пересечения медианы СВ с биссектрисой К, а медианы АР-точка М. Тогда по условию ДК/КС=2/7. По свойству биссектрис в треугольнике ВДС ВД/ВС=ДК/КС=2/7. Или (1/2*АВ) / ВС=2/7. Отсюда АВ/ВС=4/7. Аналогично в треугольнике АВР АВ/ВР=АМ/МР. Но АВ/ВР=АВ / (1/2*ВС) = 8/7. Следовательно искомое отношение АМ/МР=8/7.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Биссектриса угла B треугольника ABC делит медиану, проведенную из вершины C, в отношении 7:2, считая от вершины C. В каком отношении, ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы