Задать вопрос
27 апреля, 15:41

Докажите, что отношение соответствующих биссектрис в подобных треугольниках равно коэффициенту подобия.

Помогите решить задание

Буду очень благодарен!

+5
Ответы (1)
  1. 27 апреля, 16:32
    0
    Пусть треугольники ABC и A'B'C' подобны, при этом коэффициент подобия равен k (AB/A'B'=BC/B'C'=AC/A'C'=k). Пусть проведены биссектрисы AD и A'D', докажем, что тогда AD/A'D'=k. Действительно, углы A и A' подобных треугольников равны, тогда углы DAC и D'A'C' также равны. Значит, треугольники ACD и A'C'D' подобны по двум углам (углы C и C' также равны). Следовательно, AD/A'D'=AC/A'C'=k, что и требовалось доказать.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Докажите, что отношение соответствующих биссектрис в подобных треугольниках равно коэффициенту подобия. Помогите решить задание Буду очень ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы