Задать вопрос
15 августа, 14:10

Из точки А в окружность с центром О проведены касательные АВ и АС. Докажите, что точка О лежит на биссектрисе угла ВАС.

+3
Ответы (1)
  1. 15 августа, 17:15
    0
    Прямоугольные треугольники ОВА и ОСА (отрезок ОВ перпендикулярен АВ, а отрезок ОС перпендикулярен АС как радиусы к касательным в точке касания) равны по катету и гипотенузе. Катеты равны как радиусы, а гипотенуза АО - общая. Раз треугольники равны, значит против равных сторон лежат равные углы, то есть угол ОАВ равен углу ОАС, а это значит, что ОА - биссектриса угла ВАС. Итак, точка О лежит на биссектрисе угла ВАС, что и требовалось доказать.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Из точки А в окружность с центром О проведены касательные АВ и АС. Докажите, что точка О лежит на биссектрисе угла ВАС. ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы