Задать вопрос
9 ноября, 22:03

На окружностях оснований цилиндра отмечены точки А и В так, что АВ = 10 м, а угол между прямой АВ и плоскостью основания цилиндра равен 30°. Расстояние от точки А до центра основания, содержащего точку В, равно 13 м. Найдите площадь боковой поверхности цилиндра

+5
Ответы (1)
  1. 10 ноября, 01:22
    0
    Так как А и В - на основаниях цилиндра, то АВ*sin30=5=h - высота. Значит, радиус основания равен AO^2-h^2=12^2

    Площадь боковой пов-ти равна (2*пи*ВО) * h=120 пи
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «На окружностях оснований цилиндра отмечены точки А и В так, что АВ = 10 м, а угол между прямой АВ и плоскостью основания цилиндра равен ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы