Задать вопрос
3 мая, 00:28

Найдите угол между двумя смежными боковыми гранями правильного тетраэдра

+3
Ответы (1)
  1. 3 мая, 01:14
    0
    Правильный тетраэдр - это правильная треугольная пирамида у которой все грани являются равносторонними треугольниками. Искомый угол - это угол между высотами двух соседних граней (по определению), то есть это угол при вершине равнобедренного треугольника с боковыми сторонами - высотами граней и основанием - стороной основания тетраэдра. Высота правильного треугольника равна h = (√3/2) * a, где а - сторона треугольника. Тогда по теореме косинусов: Cosα = (AH+BH²-AB²) / (2*AH*BH) или в нашем случае

    Cosα = (1/2) * а² / ((1/2) * 3 а²) = 1/3.

    Ответ: α = arccos (1/3) ≈ 70,5°.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Найдите угол между двумя смежными боковыми гранями правильного тетраэдра ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы