Задать вопрос
28 декабря, 22:10

Точка М равноудалена от вершин равностороннего треугольника АБС, отрезок МН-перпендикуляр, проведённый из точки М к плоскости АБС. Найдите МА, если АБ=6, МН=2.

+4
Ответы (1)
  1. 28 декабря, 23:53
    0
    Точка М равноудалена от вершин равностороннего треугольника АВС, значит она проецируется в центр треугольника АВС, так как проекции равных наклонных равны. Итак, точка Н - центр треугольника АВС. В правильном треугольнике АВС высота АР является и медианой и биссектрисой угла А. АР = (√3/2) * а - формула. АР = 3√3. Высота АР правильного треугольника АВС делится центром Н в отношении 2:1, считая от вершины (свойство). Значит АН=АР * (2/3) = 2√3. По Пифагору из треугольника АМН имеем: АМ=√ (АН²+МН²) = √ (12+4) = 4.

    Ответ: АМ=4 ед.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Точка М равноудалена от вершин равностороннего треугольника АБС, отрезок МН-перпендикуляр, проведённый из точки М к плоскости АБС. Найдите ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы