Задать вопрос
22 сентября, 19:55

Доказать, что среди любых 1001 разных натуральных чисел, меньше чем 2000, хотя бы одно равно сумме двух других. (скорее всего принцип Дирихлэ)

(случайно выбрал не тот предмет, это математика)

+5
Ответы (1)
  1. 22 сентября, 23:40
    0
    Объясню так, как я понял.

    Если бы чисел было, например, 1000, то можно было бы выбирать их через одно: 1,3,5,7,9 и т. д. Что бы мы не сложили, никогда не будет выполнятся заданное условие. Если же чисел 1001, то даже если мы сделаем то же самое, что и в прошлый раз, мы дойдем до 2000 и нам в любом случае нужно будет куда-то деть последнее число, за счет чего мы создадим комбинацию из трех последовательных чисел, например: 1,2,3, при которой выполняется заданное условие. То же самое и с двузначными и трехзначными числами, просто сумма их будет где-то дальше в прогрессии.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Доказать, что среди любых 1001 разных натуральных чисел, меньше чем 2000, хотя бы одно равно сумме двух других. (скорее всего принцип ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы