Задать вопрос
1 июня, 22:15

Внутри треугольника ABC взяли точку О так, что бы угол АОВ=угол АОС, и угол АОВ=120. АВ=АС. докажите, что АО биссектрисса угла А и найдите угол ВОС

+3
Ответы (1)
  1. 2 июня, 00:41
    0
    Здесь можно использовать понятие (осевой) симметрии. Будем поворачивать треугольник АОВ в пространстве вокруг линии ОА. Точки А и О останутся на месте, линия ОВ наложится на линию ОС (углы АОВ и АОС равны!), при этом точка В совместится с точкой С, потому что длина отрезка АВ равна длине отрезка АС. Значит, отрезок ОВ совместится с отрезком ОС, а значит, ОВ=ОС.

    Теперь треугольники АОВ и АОС равны, следовательно, углы ОАВ и ОАС равны.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Внутри треугольника ABC взяли точку О так, что бы угол АОВ=угол АОС, и угол АОВ=120. АВ=АС. докажите, что АО биссектрисса угла А и найдите ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы