Задать вопрос
6 марта, 19:29

Доказать, что треугольник прямоугольный, если медина равна половине стороны, к которой она проведена

+3
Ответы (1)
  1. 6 марта, 19:50
    0
    Треугольник ABC, AC - основание, BH - медиана, она делит AC пополам. Получается, что BH = AH = HC. Рассмотрим треугольник BAH. Т. к. BH = AH, то этот треугольник равнобедренный, поэтому угол BAH = углу ABH. Теперь рассмотрим треугольник BHC. BH = HC = > треугольник равнобедренный = > угол BCH = углу HBC. Рассмотрим наш угол ABC. Он состоит из углов ABH и HBC, т. е. угол ABC равен сумме углов при основании. А такое возможно только в прямоугольном треугольнике.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Доказать, что треугольник прямоугольный, если медина равна половине стороны, к которой она проведена ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы