Задать вопрос
17 января, 06:39

Докажите, что четырехугольник, вершинами которых является середины сторон произвольного ромба, является прямоугольником

+2
Ответы (1)
  1. 17 января, 07:43
    0
    Параллелограмм, образованный серединами сторон, иногда называется вариньоновским или вариньоновым. Центр параллелограмма Вариньона лежит на середине отрезка, соединяющего середины сторон исходного четырёхугольника (в этой же точке пересекаются отрезки, соединяющие середины противоположных сторон - диагонали вариньоновского параллелограмма). Периметр параллелограмма Вариньона равен сумме диагоналей исходного четырёхугольника. Площадь параллелограмма Вариньона равна половине площади исходного четырёхугольника. Следствие из теоремы: для прямоугольника и равнобедренной трапеции параллелограммом Вариньона является ромб, а для ромба - парал.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Докажите, что четырехугольник, вершинами которых является середины сторон произвольного ромба, является прямоугольником ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы