Задать вопрос
8 июля, 15:47

В прямоугольнике abcd, ae и cf перпендикуляры опущенные из вершин A и C на диагональ BD. Угол между диагоналями равен 30. CA=2 см. Докажите, что AE равняется CF. Найдите длину диагонали BD.

+5
Ответы (1)
  1. 8 июля, 19:38
    0
    В прямоугольнике диагональ делит его на два равных треугольника ⇒ высоты, проведенные к равным сторонам (а в данном случае АЕ и СФ являются высотами, ведь они перпендикулярны стороне ВД) также равны, т. е. АЕ=СФ.

    В прямоугольнике диагонали равны ⇒ ВД=АС=2.

    P. S. И я не понимаю, зачем еще дали какой-то угол между диагоналями.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В прямоугольнике abcd, ae и cf перпендикуляры опущенные из вершин A и C на диагональ BD. Угол между диагоналями равен 30. CA=2 см. ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы